
Decentralized Reinforcement Learning
for Wake-up Scheduling

Mihail Mihaylov1, Yann-Aël Le Borgne1, Ann Nowé1, and Karl Tuyls2

1Vrije Universiteit Brussel and 2Maastricht University

Abstract. Latency is a key issue in the application of delay-critical
sensor nets. Reducing latency requires non trivial synchronization of the
sensor nodes. This work presents a decentralized reinforcement learning
algorithm allowing to decrease the end-to-end latency. Each node learns
on-line the most beneficial period to stay awake, such that it avoids
idle listening and overhearing. We illustrate this approach and using the
OMNET++ simulator we show that it reduces end-to-end latency in a
network while preserving its energy efficiency.

1 Decentralized Learning

The nodes of a WSN are limited in power, processing and communication ca-
pabilities, which requires that they optimize their activities. The focus of our
work is on periodic data collection, where sensor nodes must periodically com-
municate their measurements to a centralized unit referred to as sink. We show
that using a decentralized reinforcement learning approach, the WSN achieves
lower end-to-end latency with (i.) no communication overhead, (ii.) no clock syn-
chronization, (iii.) at no energy expense and (iv.) without the need for a central
mediator.

In our learning environment, a data collection round (or epoch) is divided
in S slots, and we assume that the duty-cycle is fixed. We use Q-learning as a
Reinforcement Learning algorithm [Watkins C., Learning from delayed rewards,
PhD thesis, University of Cambridge.]. Every node stores a “quality-value” (Q-
value) for each slot within its epoch. This value for each slot indicates how
beneficial it is for the node to stay awake during that slots for every frame, i.e.
what is the most optimal wake-up pattern, given its duty cycle and consider-
ing its communication history. When a communication event occurs at a node
(overheard, sent or received a packet) or if no event occurred during the wake
period (idle listening), that node updates the quality-value of the slot(s) when
this event happened. Nodes update their quality values using the following up-
date rule: Qi

s ← (1−λ) · Q̂i
s +λ · ri

s, where Qi
s ∈ {−1, . . . , 1} is the quality of slot

s ∈ {1, . . . , S} within the epoch of agent i. Intuitively, a high Qi
s value indicates

that it is beneficial for agent i to stay awake during slot s. This quality value is
updated using the Q-value Q̂i

s of the previous epoch for that slot, the learning
rate λ ∈ {0..1}, that decreases with time, and the newly obtained reward ri

s for
the event that (just) occurred in slot s.

When forwarding messages to the sink, over time, nodes acquire sufficient
information on “slot quality”, to determine the best period within the epoch to



stay awake. For example, if the required duty cycle of the nodes is set to 10%,
each node will stay awake for those 10 consecutive slots within its epoch (of 100
slots) that have the highest sum of Q-values. This behaviour makes neighbouring
nodes (de)synchronize their actions, resulting in faster message delivery and thus
lower end-to-end latency.

2 Results and Conclusion

Our learning approach was carried out on a 3-hop random network topology with
8 nodes. We chose this type of random topology, since it is not as trivial as a grid
topology, yet, the network is small enough to allow for the learning behaviour to
be manually analyzed and validated. Epochs were divided in S = 100 slots, and
we modelled four different events, namely overhearing (r = −0.5), idle listening
(r = −0.1 for each slot), successful transmission (r = 0.5 when ACK received)
and successful reception (r = 0.5). These constants were empirically chosen to
maximize the impact of learning.

0

1

2

3

4

5

6

7

8

5 10 15 20 25 30

Duty Cycle (%)

La
te

nc
y 

(s
ec

.)

not learning
learning

Fig. 1. Average end-to-end latency for different duty cycles with learning [blue line]
and without learning [brown line].

The gains in latency resulting from our learning approach are displayed in
Figure 1. While for duty cycles less than 8% our learning approach fails to im-
prove on latency, the decrease in latency becomes more apparent as the duty
cycle increases. The lower bound on the network latency is dependent on pa-
rameters, such as bitrate, frame length, packet size, etc. and was estimated at



0

10

20

30

40

50

60

70

5 10 15 20 25 30

Duty Cycle (%)

B
at

te
ry

 (%
)

not learning
learning

Fig. 2. Average remaining battery of nodes after 3000 seconds of runtime for different
duty cycles with and without learning.

3.0343, which our learning approach closely follows. The reason for the decreased
performance of the learning algorithm in very low duty cycles is that the nodes
spend very little time being awake and thus are not able to learn a good schedule
quickly enough.

The learning behaviour of the nodes comes at no energy expense, as it is
apparent in Figure 2. The latter figure shows that learning does not result in
lower battery life than when not learning. On the contrary, we were able to
detect 1% increase in battery life when nodes use our reinforcement learning
algorithm. Computational and memory requirements for running the algorithm
are minimal and therefore – neglected in the final results.

Using the learning approach we were able to achieve lower end-to-end latency
at no energy cost. When forwarding sensor data to the sink, nodes determine the
most beneficial period for staying awake and thus adapt to the network topology
and data rate at no additional communication cost. The reinforcement learning
rule indeed only depends on the activity of the node’s radio, and therefore the
proposed strategy does not incur any communication overhead. In addition, our
algorithm requires no clock synchronization and no central mediator, since each
agent learns independently. This makes the proposed approach fully decentral-
ized, and therefore scalable to large networks. Our future work will address the
extension of our algorithm to adaptive duty cycles.


